

Stinger Initiative: Introduction

Interactive Query on Hadoop

Chris Harris

E-Mail: charris@hortonworks.com

Twitter: cj_harris5

The World of Data is Changing

Source: IDC

By 2015, organizations that build a modern information management system will outperform their peers financially by 20 percent.

- Gartner, Mark Beyer, "Information Management in the 21st Century"

Hortonworks

© Hortonworks Inc. 2013

What is Hadoop?

Hadoop is a new data platform, that can store more data, more kinds of data, and perform more flexible analyses

Hadoop is open source and runs on industry standard hardware, so it's 1-2 orders of magnitude more economical than conventional data solutions

Hadoop provides more cost effective storage, processing, and analysis. Some existing workloads run faster, cheaper, better

Hadoop Enterprise Use Cases

Vertical	Use Case	Data Type
Financial Services	New Account Risk Screens	Text, Server Logs
	Fraud Prevention	Server Logs
	Trading Risk	Server Logs
	Maximize Deposit Spread	Text, Server Logs
	Insurance Underwriting	Geographic, Sensor, Text
	Accelerate Loan Processing	Text
Telecom	Call Detail Records (CDRs)	Machine, Geographic
	Infrastructure Investment	Machine, Server Logs
	Next Product to Buy (NPTB)	Clickstream
	Real-time Bandwidth Allocation	Server Logs, Text, Sentiment
	New Product Development	Machine, Geographic
Retail	360° View of the Customer	Clickstream, Text
	Analyze Brand Sentiment	Sentiment
	Localized, Personalized Promotions	Geographic
	Website Optimization	Clickstream
	Optimal Store Layout	Sensor
Manufacturing	Supply Chain and Logistics	Sensor
	Assembly Line Quality Assurance	Sensor
	Proactive Maintenance	Machine
	Crowdsourced Quality Assurance	Sentiment

A Brief History of Apache Hadoop

Hortonworks Inc. 2013

© Hortonworks Inc. 2013

Leadership that Starts at the Core

Driving next generation Hadoop

 YARN, MapReduce2, HDFS2, High Availability, Disaster Recovery

420k+ lines authored since 2006

More than twice nearest contributor

Deeply integrating w/ecosystem

- Enabling new deployment platforms
 - (ex. Windows & Azure, Linux & VMware HA)
- Creating deeply engineered solutions
 - (ex. Teradata big data appliance)

All Apache, NO holdbacks

- 100% of code contributed to Apache

Operational Data Refinery

APPLICATIONS Business Custom **Enterprise Analytics Applications Applications** DATA SYSTEMS **RDBMS EDW** TRADITIONAL REPOS DATA SOURCES **Traditional Sources New Sources** (RDBMS, OLTP, OLAP) (web logs, email, sensor data, social media) Refine - Explore - Enrich

Collect data and apply a known algorithm to it in trusted operational process

- Capture
 Capture all data
- Process
 Parse, cleanse, apply structure & transform
- Push to existing data warehouse for use with existing analytic tools

Key Capability in Hadoop: Late binding

With traditional ETL, structure must be agreed upon far in advance and is difficult to change.

With Hadoop, capture all data, structure data as business need evolve.

Hortonworks

Big Data Exploration & Visualization

APPLICATIONS Business Custom **Enterprise Analytics Applications Applications** 3 DATA SYSTEMS **EDW** TRADITIONAL REPOS DATA SOURCES **Traditional Sources New Sources** (RDBMS, OLTP, OLAP) (web logs, email, sensor data, social media)

Collect data and perform iterative investigation for value

Explore

Enrich

1 Capture
Capture all data

Refine

- Process
 Parse, cleanse, apply structure & transform
- Exchange
 Explore and visualize with analytics tools supporting Hadoop

Hortonworks

Visualization Tooling

- Robust visualization and business tooling
- Ensures scalability when working with large datasets

Native Excel support

Enhancing the Core of Apache Hadoop

Deliver high-scale storage & processing with enterprise-ready platform services

Unique Focus Areas:

- Bigger, faster, more flexible Continued focus on speed & scale and enabling near-real-time apps
- Tested & certified at scale Run ~1300 system tests on large Yahoo clusters for every release
- Enterprise-ready services High availability, disaster recovery, snapshots, security, ...

Page 11

Data Services for Full Data Lifecycle

Provide *data services* to store, process & access data in many ways

Unique Focus Areas:

- Apache HCatalog
 Metadata services for consistent table access to Hadoop data
- Apache Hive
 Explore & process Hadoop data via SQL & ODBC-compliant BI tools
- Apache HBase
 NoSQL database for Hadoop
- WebHDFS
 Access Hadoop files via scalable REST API
- Talend Open Studio for Big Data Graphical data integration tools

Hortonworks

© Hortonworks Inc. 2013 Page 12

Organize Tiers and Process with Metadata

Hortonworks

Hive Current Focus Area

Non-Real-Time Interactive Batch Interactive Parameterized Online systems Data preparation Operational batch Incremental batch R-T analytics Reports processing • CEP Drilldown Enterprise processing Visualization Dashboards / Reports Exploration Scorecards Data Mining **Current Hive Sweet Spot** 1m - 1h0-5s 5s - 1m1h+ **Data Size**

Hortonworks

Stinger: Extending Hive's Sweetspot

Non-Real-Time Interactive Batch Interactive Parameterized Online systems Data preparation Operational batch Incremental batch R-T analytics Reports processing • CEP Drilldown Enterprise processing Visualization Dashboards / Reports Exploration Scorecards Data Mining **Future Hive Current Hive Sweet Spot** Expansion 1m - 1h0 - 5s5s - 1m1h+ **Data Size**

Improve Latency & Throughput

- Query engine improvements
- New "Optimized RCFile" column store
- Next-gen runtime (elim's M/R latency)

Extend Deep Analytical Ability

- Analytics functions
- Improved SQL coverage
- Continued focus on core Hive use cases

© Hortonworks Inc. 2013 Page 15

Hadoop 2.0... The Enterprise Generation

- 1.0 Architected for the Large Web Properties
- 2.0 Architected for the **Broad Enterprise**

Enterprise Requirements	Hadoop 2.0 Features	
Mixed workloads	YARN	
Interactive Query	Hive on Tez	
Reliability	Full Stack HA	
Point in time Recovery	Snapshots	
Multi Data Center	Disaster Recovery	
ZERO downtime	Rolling Upgrades	
Security	Knox Gateway	

The Stinger Initiative

Interactive Query on Hadoop

Stinger Initiative At A Glance

Hortonworks

© Hortonworks Inc. 2013 Page 18

Base Optimizations: Intelligent Optimizer

Introduction of In-Memory Hash Join:

- For joins where one side fits in memory:
- New in-memory-hash-join algorithm.
- Hive reads the small table into a hash table.
- Scans through the big file to produce the output.

Introduction of Sort-Merge-Bucket Join:

- Applies when tables are bucketed on the same key.
- Dramatic speed improvements seen in benchmarks.

Other Improvements:

- Lower the footprint of the fact tables in memory.
- Enable the optimizer to automatically pick map joins.

Dimensionally Structured Data

- Extremely common pattern in EDW.
- Results in large "fact tables" and small "dimension tables".
- Dimension tables often small enough to fit in RAM.
- Sometimes called Star Schema.

A Query on Dimensional Data

Derived from TPC-DS Query 27

```
SELECT col5, avg(col6)
FROM fact_table
    join dim1 on (fact_table.col1 = dim1.col1)
    join dim2 on (fact_table.col2 = dim2.col1)
    join dim3 on (fact_table.col3 = dim3.col1)
    join dim4 on (fact_table.col4 = dim4.col1)
GROUP BY col5
ORDER BY col5
LIMIT 100;
```

Dramatic speedup on Hive 0.11

Star Schema Join Improvements in 0.11

Star Schema Join: Hive 0.10 without hints.

- Join fact_table to dim1. Persist results.
- Join results to dim2. Persist results.
- Join results to dim3. Persist results.
- Join results to dim4. Persist results.
- Group results by co15. Persist results.
- 6 Order results by co15. Persist results.
- Client reads results.

BEFORE

Star Schema Join: Hive 0.11 without hints.

- Load dim1 dim4 into memory on all nodes. (HIVE-3784)
 Perform map-side joins. (HIVE-3952)
 Collapse ORDER BY and GROUP BY into single reducer.
 (HIVE-2340)
 - Persist results.
- Client reads results.

AFTER

ORCFile - Optimized Column Storage

- Make a better columnar storage file
 - Tightly aligned to Hive data model
- Decompose complex row types into primitive fields
 - Better compression and projection
- Only read bytes from HDFS for the required columns.
- Store column level aggregates in the files
 - Only need to read the file meta information for common queries
 - Stored both for file and each section of a file
 - Aggregates: min, max, sum, average, count
 - Allows fast access by sorted columns
- Ability to add bloom filters for columns
 - Enables quick checks for whether a value is present

Hortonworks

Yarn

Moving Hive and Hadoop beyond MapReduce

Hadoop 2.0 Innovations - YARN

- Focus on scale and innovation
 - Support 10,000+ computer clusters
 - Extensible to encourage innovation
- Next generation execution
 - Improves MapReduce performance
- Supports new frameworks beyond MapReduce
 - Low latency, Streaming, Services
 - Do more with a single Hadoop cluster

Tez

Moving Hive and Hadoop beyond MapReduce

Tez

- Low level data-processing execution engine
- Use it for the base of MapReduce, Hive, Pig, Cascading etc.
- Enables pipelining of jobs
- Removes task and job launch times
- Hive and Pig jobs no longer need to move to the end of the queue between steps in the pipeline
- Does not write intermediate output to HDFS
 - Much lighter disk and network usage
- Built on YARN

Tez - Core Idea

Task with pluggable Input, Processor & Output

Tez Task - <Input, Processor, Output>

YARN ApplicationMaster to run DAG of Tez Tasks

Tez – Blocks for building tasks

MapReduce 'Map'

MapReduce 'Reduce'

Intermediate 'Reduce' for Map-Reduce-Reduce

© Hortonworks Inc. 2013 Page 29

Tez – More tasks

Special Pig/Hive 'Map'

In-memory Map

Special Pig/Hive 'Reduce'

Pig/Hive-MR versus Pig/Hive-Tez

SELECT a.state, COUNT(*), AVERAGE(c.price)
FROM a
JOIN b ON (a.id = b.id)
JOIN c ON (a.itemId = c.itemId)
GROUP BY a.state

Pig/Hive - Tez

FastQuery: Beyond Batch with YARN

Recap and Questions: Hive Performance

Hortonworks

© Hortonworks Inc. 2013 Page 33

Improving Hive's SQL Support

Stinger: Deep Analytical Capabilities

SQL:2003 Window Functions

- OVER clauses
 - Multiple PARTITION BY and ORDER BY supported
 - Windowing supported (ROWS PRECEDING/FOLLOWING)
 - Large variety of aggregates
 - RANK
 - FIRST_VALUE
 - LAST_VALUE
 - LEAD / LAG
 - Distrubutions

Hive Data Type Conformance

Data Types:

- Add fixed point NUMERIC and DECIMAL type (in progress)
- Add VARCHAR and CHAR types with limited field size
- Add DATETIME
- Add size ranges from 1 to 53 for FLOAT
- Add synonyms for compatibility
 - BLOB for BINARY
 - TEXT for STRING
 - REAL for FLOAT

SQL Semantics:

- Sub-queries in IN, NOT IN, HAVING.
- EXISTS and NOT EXISTS

Questions?

